Reactive transport impacts on recovered freshwater quality during multiple partially penetrating wells (MPPW-)ASR in a brackish heterogeneous aquifer

Koen G. Zuurbier a, b, *, Niels Hartog a, c, Pieter J. Stuyfzand a, b

a KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands
b Technical University Delft, Faculty of Civil Engineering, P.O. Box 5048, 2600 GA, Delft, The Netherlands
c Utrecht University, Faculty of Geosciences, P.O. Box 89021, 3508 TA, Utrecht, The Netherlands

Abstract

The use of multiple partially penetrating wells (MPPW) during aquifer storage and recovery (ASR) in brackish aquifers can significantly improve the recovery efficiency (RE) of unmixed injected water. The water quality changes by reactive transport processes in a field MPPW-ASR system and their impact on RE were analyzed. The oxygenated freshwater injected in the deepest of four wells was continuously enriched with sodium (Na\(^+\)) and other dominant cations from the brackish groundwater due to cation exchange by repeating cycles of 'freshening'. During recovery periods, the breakthrough of Na\(^+\) was retarded in the deeper and central parts of the aquifer by 'salinization'. Cation exchange can therefore either increase or decrease the RE of MPPW-ASR compared to the RE based on conservative Cl\(^-\), depending on the maximum limits set for Na\(^+\), the aquifer's cation exchange capacity, and the native groundwater and injected water composition. Dissolution of Fe and Mn-containing carbonates was stimulated by acidifying oxidation reactions, involving adsorbed Fe\(^{2+}\) and Mn\(^{2+}\) and pyrite in the pyrite-rich deeper aquifer sections. Fe\(^{2+}\) and Mn\(^{2+}\) remained mobile in anoxic water upon approaching the recovery proximal zone, where Fe\(^{2+}\) precipitated via MnO\(_2\) reduction, resulting in a dominating Mn\(^{2+}\) contamination. Recovery of Mn\(^{2+}\) and Fe\(^{2+}\) was counteracted by frequent injections of oxygen-rich water via the recovering well to form Fe and Mn-precipitates and increase sorption. The MPPW-ASR strategy exposes a much larger part of the injected water to the deeper geochemical units first, which may therefore control the mobilization of undesired elements during MPPW-ASR, rather than the average geochemical composition of the target aquifer.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Aquifer storage and recovery (ASR) using wells can be a successful freshwater management tool in coastal areas worldwide by keeping temporary freshwater surpluses available for periods of shortage (Pyne, 2005). Freshwater surpluses are stored this way for later use in times of demand, creating a self-sufficient freshwater supply which makes external freshwater supply (including infrastructure) and/or costly desalination superfluous. However, application of especially small-scale ASR systems in aquifers with brackish or saline groundwater often results in a low recovery efficiency (RE: part of the injected water that can be recovered with a satisfying quality) due to buoyancy effects (Ward et al., 2009; Zuurbier et al., 2013). Also, the buoyancy effects may preclude a progressively improving water quality with subsequent cycles as observed at conventional ASR systems (Ward et al., 2009). Recently, the use of multiple partially penetrating wells (MPPW) installed in a single borehole in a brackish aquifer allowed significantly higher recovery efficiencies by deep injection and shallow recovery, as demonstrated for relatively unmixed rainwater containing <0.5 mmol/l Na\(^+\) (Zuurbier et al., 2014). While that study focused on the buoyancy and mixing effects on the conservative transport of chloride (Cl\(^-\)), other water quality parameters may determine the final success of ASR, depending on the intended use. Sodium (Na\(^+\)), for example, may threaten the water quality for irrigation since it is toxic in low concentrations for various plants or crops (Kronzucker and Britto, 2011), but also for drinking and industrial purposes. Also, arsenic is known to be toxic for both humans and plants (National Research Council, 1977). Besides toxic effects, operational aspects, such as the clogging of pumps, pipelines, and

* Corresponding author. KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands.
E-mail address: koen.zuurbier@kwrwater.nl (K.G. Zuurbier).
sprinklers by the precipitation of manganese or iron oxides, may determine the suitability of the recovered water for direct use (Pyne, 2005). Especially for agricultural end users, recovered water upon aquifer storage ought to be directly usable to limit the water costs. Although the elements of concern are typically low in ASR ‘injection water’ (i.e. the water that is to be injected, after which it becomes ‘injected water’), enrichment may occur by freshening and salinization (e.g., Appelo, 1994a, 1994b; Stuyfzand, 1993; Valocchi et al., 1981) and dissolution of carbonates (Antoniou et al., 2012; Stuyfzand, 1998). Additionally, the injection of oxygen and/or nitrate-containing water in a deeply anoxic target aquifer may induce mobilization of SO₄, Fe, Mn, and As, which has been reported in ASR studies worldwide (e.g., Antoniou et al., 2012; Jones and Pichler, 2007; Neil et al., 2014; Price and Pichler, 2006; Stuyfzand, 1998; Vanderzalm et al., 2011; Wallis et al., 2010, 2011).

The operation of an MPPW-ASR system does not comply with the more traditional ASR-theories for bi-directional horizontal flow directions during injection and recovery via fully penetrating well screens in aquifers without significant buoyancy effects. During MPPW-ASR, instead, (oxygen-rich) freshwater is predominantly injected in brackish aquifers via the deeper wells while extraction occurs at shallower wells. Consequently, vertical transport exposes the injected water to a vertical range of geochemical heterogeneities in the aquifer and the associated potential sources of water quality deterioration. Additionally, hydrochemical conditions at the deeper wells are highly dynamic, with frequent alternations of freshening (during injection) and salinization (during storage/recovery). In this study, therefore, we analyzed the observed water quality changes by reactive transport processes in a field MPPW-ASR system with a focus on cation-exchange and redox-reactions and their impact on the RE. Hydrochemical data were collected during the field MPPW-ASR pilot in a brackish aquifer for which Zuurbier et al. (2014) described the hydrological aspects and freshwater recoverability based on conservative transport (chloride). The aim of this study was to assess for the same MPPW-ASR system how reactive transport processes affected the concentrations of Na⁺, Fe²⁺, Mn⁴⁺, and As in the recovered water over time. This provides a more complete analysis of the application and operational optimization of MPPW-ASR systems.

2. Materials and methods

The application of an MPPW-ASR system in a brackish aquifer was well-monitored in a field pilot in 2012 and 2013 allowing to closely analyze the water quality development in the aquifer until recovery. This field pilot was preceded by a detailed physical and geochemical characterization of the aquifer to understand the flow patterns and water quality changes.

2.1. ASR field site

The Nootdorp MPPW-ASR system was built in 2011 with the aim to store rainwater collected by the roof of a 20,000 m² greenhouse, and to recover this water for irrigation purposes in the same greenhouse (more details in Zuurbier et al., 2014). The MPPW, with four independently operated well screens at distinct aquifer intervals installed in a single borehole, were used to maximize the freshwater recovery (Fig. 1). The ASR system was extensively monitored for this study from January 2012 until September 2013. The unconsolidated target aquifer is confined by unconsolidated clay and peat. Geological characterization indicated that the target aquifer consists of middle-coarse to very coarse fluvial sands from the Rhine River (Zuurbier et al. 2014). The lower part (HU-F4, Fig. 3) is a little coarser than the upper part (HU-a–c). A fine sand layer (HU-d) and a sand layer containing reworked clay and peat deposits in a coarse sand matrix (HU-e) are present in the middle of the target aquifer. This HU-e unit is dis-continuous and found only locally in the pilot area (Zuurbier et al., 2014). Besides local separation into two compartments by the clayey interval of this HU-e unit, the aquifer is relatively homogeneous, as indicated by geophysical and hydrochemical analysis during the first ASR cycle (Zuurbier et al., 2014).

2.2. Operation of the MPPW during the Nootdorp ASR pilot

The injection rate was equally distributed over all MPPW screens in the first 3 months (Fig. 2). From April 2012 until May 2013 only the lower three well screens (AWS2–4) were used for injection, while mainly the shallow AWS1 and AWS2 were used for recovery, accompanied by a low-rate recovery at AWS3 in Cycle 2. The freshwater surpluses in the last phase (Summer, 2013) were injected at AWS1–4 from May 2013 until August and at AWS1–3 during the last month of the pilot. During the pilot phase, 39.9% (11,591 m³) of the injected water (29,047 m³) was abstracted.

2.3. Site characterization and hydrochemical monitoring

2.3.1. Physical and geochemical sediment analyses

To characterize the target aquifer and identify potentially reactive intervals 114 samples were taken from thin-wall tubes at intervals of 0.2 m or smaller whenever lithological variations appeared (Zuurbier et al., 2014), or from the baiers at the other intervals of MW1 (every meter, n = 14). Grain size distribution of each sample was determined using a laser particle sizer (Zuurbier et al., 2014). Hydrogeological units (HU-a to HU-h) and their hydraulic properties were derived using the grain size distributions, head responses at MW1 upon pumping, and the breakthrough curves of Cl⁻ at MW1 (Zuurbier et al., 2014). Sedimentary organic matter (SOM) and total carbonates were deduced from thermogravimetry (TGA at 330, 550, 1000 °C).

An XRF-core scan (Avaatech, The Netherlands) was executed on the cut cores for a semi-quantitative analysis of Al, S, Ca, Mn, and Fe on a split-core-surface area of 1 cm² over a time interval of 10 s using a generator setting of 10 kV. This way, reliable log-ratios of Fe/S, Fe/Ca, Mn/Ca, and S/Ca were obtained, which are linearly related to the log-ratios of quantitative element concentrations (Weltje and Tjallingii, 2008). Sediments samples were taken at 6 distinct depth intervals and sent for laboratory XRF to correct the log-ratios obtained by the high-resolution core-scan. The reader is referred to the Supplementary Information for more details on the log-ratio correlation derived. True elemental ratios were subsequently attained via these log-ratios and corrected for molal masses. S/Ca was used to derive the part of Fe/Ca that is related to pyrite, assuming Fe = 0.5 × S. This way the potential relative presence of Ca, Fe, and Mn in the carbonates could be derived. In this approach the presence of these elements in silicates is neglected. Also the contribution of Mg to the carbonates is not considered, since this element is not measured by the XRF core-scan. For Fe/Al, an overestimation and a poor correlation was found with the laboratory analyses due to the relatively short measurement time of the core scan, insufficient to measure all Al present; it was therefore only used as a qualitative indication for the presence of reactive Fe (not bound to silicate minerals).

Geochemically similar units (GU-I to GU-V) were defined based on the high-resolution core-scan data. Per GU, 5 (GU-II, IV) or 10 (GU-I, II, V) equally distributed subsamples of approximately 30 g were taken from the core. Sampling depths were slightly adjusted only when equidistant sampling forced sampling of ‘unreliable intervals’, for instance by slumped sediment at the top 10 cm of each 1 m core. Each subsample was oven-dried and homogenized and then equally contributed (5 g or 10 g) to one mixed sample per GU (50 mg). These
mixed samples were analyzed on grain size distribution and SOM and total carbonates using thermogravimetric analysis (TGA). Elemental composition was derived using X-ray fluorescence (XRF), total C and S using LECO Induction Furnace Instruments, and trace elements using ICP-MS following aqua regia digestion.

2.3.2. (Ground)water sampling

All monitoring wells were sampled prior to ASR operation.

Fig. 1. Cross-section of the Nootdorp ASR system as presented in Zuurbier et al. (2014). Water from the greenhouse is first pre-treated by rapid sand filtration (R.S.F.) and slow sand filtration (S.S.F) and then injected mainly with the deeper wells (AWS3 and AWS4), whereas most recovery occurred with the shallower wells (AWS1 and AWS2). ‘MW’ – monitoring well. ‘Bulk EC’ = EC of the mixed water from all recovering wells. Indicated distribution of the injected water and the flow paths are based on Zuurbier et al. (2014).

Fig. 2. Operation of the ASR system during the 611 d pilot. Most of the water was injected at AWS2-4, whereas the bulk of the water was recovered by AWS1-2.
MW1 and MW2 were sampled monthly from January 2012 until September 2013 and a higher frequency was maintained during the first breakthrough of the injected water at MW1 (January/February 2012). Three times the volume of the well riser plus well screen was purged from the wells prior to sampling. The pretreated ASR injection water was sampled 19 times during the pilot runtime. All samples were analyzed in the field in a flow-through cell for EC, pH, temperature, and dissolved oxygen. Samples for lab analysis were passed over a 0.45 µm cellulose acetate membrane in the field. The reader is referred to Zuurbier et al. (2014) for more information on the handling and analysis of the water samples during the Nootdorp ASR pilot.

2.4. Geochemical and hydrochemical data analysis

2.4.1. Geochemical data analysis

Pyrite content (FeS₂), reactive iron in pyrite (Feₚᵧ), total reactive iron (Feₚᵣ), and reactive iron (non-pyrite: Feᵣₑₐₑₜ) were calculated using:

\[
FeS₂ = 0.5 \cdot M_{FeS₂}/M_S \cdot S
\]

(1.1)

\[
Feₚᵧ = 0.5 \cdot M_{Fe}/M_S \cdot S
\]

(1.2)

\[
Feₚᵣ = 2 \cdot M_{Fe}/M_{Fe₂O₃} \cdot [Fe₂O₃ - 0.1 \cdot Al₂O₃]
\]

(1.3)

\[
Feᵣₑₐₑₜ = Feₚᵣ - Feₚᵧ
\]

(1.4)

where \(M_{FeS₂}\), \(Mₚᵧ\), and \(Mₚᵣ\) are the molar masses of FeS₂, S, and Fe₂O₃, respectively. \(S\) is the total S content by weight as measured by the CS elemental analyzer, and \(Fe₂O₃\) and \(Al₂O₃\) are contents by weight, as determined by XRF. The correction of \(Fe₂O₃\) for silicate-bound Fe to determine \(Feₚᵣ\) was based on the lowest \(Fe₂O₃/Al₂O₃\) ratio found in the XRF lab analyses (see Supplementary Information).

The cation exchange capacity (CEC) of each GU was calculated using (Appelo and Postma, 2005):

\[
CEC(\text{meq/kg}) = 7 \cdot (%\text{clay}) + 35 \cdot (%\text{C})
\]

(2)

where \%clay is the clay fraction (<2 µm) derived from the grain size analyses and \(%\text{C}\) is the fraction of organic carbon, which is derived from TGA (assumed \%C = LOI550/2). Total C from the CS analyses was selected only when \%C from TGA exceeded the total C from the CS analyzer.

2.4.2. Hydrochemical processes and data analysis

Total dissolved solids (TDS) was calculated based on the
measured concentrations to correct for density differences in the groundwater flow model (Zuurbier et al., 2014). The Base Exchange Index (BEX; Stuyfzand, 1993, 2008) was calculated to identify freshening and salinization.

The potentially relevant hydrochemical reactions are shown in Table 1. Since NO₃ concentrations in rainwater are low, DO is considered the most relevant oxidant in the injection water. Some processes (cation exchange, nitrification, oxidation of adsorbed Fe and Mn) are mainly relevant in the mixing zone and during freshening, but rarely during later injection, while others (pyrite and SOM oxidation, carbonate dissolution) are relatively persistent, or relevant during recovery (MnO₂ and Fe(OH)₃ reduction, cation exchange).

The amount of pyrite oxidation was calculated using the maximum SO₄-production observed at the different ASR well screens and was based on the difference between SO₄²⁻ concentration in the injected and recovered water. The amount of oxygen consumption by pyrite was calculated as:

\[\Delta C(O_{2}(\text{pyrite})) = \frac{3.75}{2} \left[C(SO_4) - C(SO_4(\text{injection})) - C(SO_4(NO_3)) \right] \]

(3)

where \(\Delta C(O_{2}(\text{pyrite})) \) is the oxygen consumption by pyrite, \(C(SO_4) \) is the molal concentration \(SO_4^2- \) observed in the aquifer upon injection, \(C(SO_4(\text{injection})) \) is the molal \(SO_4^2- \) concentration in the injection water, and \(C(SO_4(NO_3)) \) is the molal \(SO_4^2- \) production from NO₃ (assuming all NO₃ is consumed by oxidation of pyrite). The latter was calculated using:

\[C(SO_4(NO_3)) = \frac{10}{14} \left[C(NO_3(\text{injected})) - C(NO_3) \right] \]

(4)

where \(C(NO_3(\text{injected})) \) is the molal concentration of NO₃ in the injection water (0.05 mmol/L in the collected rainwater) and \(C(NO_3) \) is the molal concentration of NO₃ observed in the aquifer during storage.

2.5. Modelling codes and set-up

A reactive transport model was built to verify if alternating freshening and salinization could indeed affect the recovered water quality and explore long-term effects and the effect of injection water modification.

2.5.1. Input flow model

SEAWAT (Langevin et al., 2007) was used to calculate the flow field in an axi-symmetrical model during the two field trial cycles (611 days, January 2012 – September 2013). Three subsequent fictitious cycles were added in a simplified way after Cycle 2. TDS was used to calculate the density in each cell, as described in Zuurbier et al. (2014). The modelled pumping scheme is described in Table 3. The three additional cycles contained relatively long periods without injection, resulting in more salinization at the end of each cycle than in Cycle 1 and 2. Pre- and post-processing was performed using PMWIN8.06 (Simcore Software, 2010).

2.5.2. PHD3D model input for reactive transport (cation exchange)

Initial concentrations of Na⁺, Cl⁻, Ca²⁺, Mg²⁺, K⁺, NH₄⁺, HCO₃⁻, and the pH were derived from chemical analyses on samples taken at MW1 prior to ASR operation. The cation compositions (Na-X, Ca-X, Mg-X, K-X, NH₄-X) were first calculated by PHREEQC (Parkhurst and Appelo, 1999) batch calculations using the standard PHREEQC database and the initial concentration and CEC at the levels of the MW1 well screens. The conversion of CEC-values to meq/l for PHREEQC was performed assuming a grain density of 2650 kg/m³ and the porosity of the target aquifer (0.25–0.35) derived from the breakthrough of Cl⁻ (Zuurbier et al., 2014). A porosity of 0.4 was assumed to calculate the CEC for the confining clay units. The approach discarded some of the geochemical variation found centrally in the target aquifer where MWS were absent (the locally clayey intervals: GU-II and GU-III). The exchange composition and the calcite content (derived from TCA and assuming all carbonates to be present as calcite) of each cell (converted to amounts per liter of bulk aquifer volume) were corrected for the axi-symmetry of the model (Wallis et al., 2013). Equilibrium conditions were assumed for calcite, redox process were not included. This provided an efficient and robust model that included the simulation of freshening and salinization effects in addition to the effects of density-driven flow on water quality development in the target aquifer.

To evaluate the influence of the CEC, injection water composition, and flow patterns on water quality development regarding Na⁺, four additional scenarios were run:

1. A scenario in which GU-III was introduced as a continuous horizontal layer with its potentially high CEC, which was based on geochemical analyses at MW1 (Table 1).

Table 1

<table>
<thead>
<tr>
<th>Process</th>
<th>Reaction equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrite oxidation</td>
<td>3.75O₂ + Fe₂⁺ + 3.5H₂O → Fe(OH)₃ + 2SO₄²⁻ + 4H⁺</td>
</tr>
<tr>
<td>Pyrite oxidation by NO₃</td>
<td>14NO₃⁻ + 5Fe₂⁺ + 4H⁺ → 5Fe(NO₃) + 10SO₄²⁻ + 7N₂ + 2H₂O</td>
</tr>
<tr>
<td>Other redox</td>
<td></td>
</tr>
<tr>
<td>Oxidation of organic matter by O₂</td>
<td>O₂ + CH₃O → CO₂ + H₂O</td>
</tr>
<tr>
<td>Oxidation of organic matter by NO₃</td>
<td>NO₃⁻ + 1.25CH₃O → -NO₂ + HCO₃ + 0.75H₂O + 0.25CO₂</td>
</tr>
<tr>
<td>Fe-carbonate oxidation</td>
<td>0.25O₂ + FeCO₃ + 1.5H₂O → Fe(OH)₃ + CO₂</td>
</tr>
<tr>
<td>Mn-carbonate oxidation</td>
<td>0.5O₂ + MnCO₃ + MnO₂ → CO₂</td>
</tr>
<tr>
<td>Oxidation of Fe²⁺</td>
<td>Fe²⁺ + 0.25O₂ + 2.5H₂O → Fe(OH)₃ + 2H⁺ (dissolved Fe²⁺)</td>
</tr>
<tr>
<td>Mn-oxidation</td>
<td>Fe₂-(adsorbed) + CO₂ → Fe(OH)₃ + 2H⁺</td>
</tr>
<tr>
<td>MnO₂ reduction by DOC</td>
<td>Mn₂O₃ + CO₂ → 2MnO₂ + CO₂</td>
</tr>
<tr>
<td>MnO₂ reduction by Fe²⁺</td>
<td>2Fe₂⁺ + Mn₂O₃ + 4H₂O → 2Fe(OH)₃ + MnO₂ + 2H₂O</td>
</tr>
<tr>
<td>Nitrification</td>
<td>4O₂ + 2NH₄⁺ → 2N₂ + 2H₂O + 4H⁺</td>
</tr>
<tr>
<td>Dissolution</td>
<td></td>
</tr>
<tr>
<td>Carbonate dissolution</td>
<td>2H⁺ + (Ca Fe Mn)CO₃ → (Ca Fe Mn)²⁻ + CO₂</td>
</tr>
<tr>
<td>Cation exchange</td>
<td></td>
</tr>
<tr>
<td>Freshening</td>
<td>aCa²⁺ + bNa⁺ + cMg²⁺ + dK⁺ + eNH₄⁺ → fFe³⁺ + gMn⁺ + hCa²⁺ + iX⁻</td>
</tr>
<tr>
<td>Salinization</td>
<td>bNa⁺ + cMg²⁺ + dK⁺ + eNH₄⁺ + fFe³⁺ + gMn⁺ + hCa²⁺ + iX⁻</td>
</tr>
</tbody>
</table>
2. A scenario with three times higher CECs for each hydrogeological unit (which was still within a realistic range according to Breeuwsma et al. (1986)) in the whole target aquifer to assess the sensitivity to CEC;

3. A scenario with addition of 5 mmol/l gypsum (CaSO4) to the injection water to test the accelerated release of Na\(^+\) from the exchanger during freshening;

4. A scenario in which a fully penetrating well is used, but buoyancy and seepage are neglected. This way, the results of the MPPW can be compared with a conventional, bi-directional ASR system. The CEC was again raised by a factor 3 to emphasize the effect of cation exchange.

3. Results

3.1. Target aquifer properties

3.1.1. Geochemical aquifer characterization

The extensive geochemical analyses produced a solid understanding of the aquifer geochemical properties. The following reactive phases were identified (Fig. 3, Table 2):

Table 2
Modeled ASR cycles in this study. Distribution of pumping rates (Q\(_{\text{tot}}\)) over the MPPW screens (S1 / S2 / S3 / S4) in the added cycles is given in percentages between brackets.

<table>
<thead>
<tr>
<th>ASR phase</th>
<th>Stress periods</th>
<th>Pumping Duration (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 1</td>
<td>1–37</td>
<td>As recorded by flowmeters (Fig. 2) 273</td>
</tr>
<tr>
<td>Cycle 2</td>
<td>38–83</td>
<td>As recorded by flowmeters (Fig. 2) 338</td>
</tr>
<tr>
<td>Idle Cycle 2</td>
<td>84</td>
<td>Idle 30</td>
</tr>
<tr>
<td>Injection Cycle 3-5</td>
<td>85, 89, 93</td>
<td>Q(_{\text{tot}}) = 133.3 m(^3)/d (0% / 10% / 40% / 50%) 150</td>
</tr>
<tr>
<td>Storage Cycle 3-5</td>
<td>86, 90, 94</td>
<td>Idle 30</td>
</tr>
<tr>
<td>Recovery Cycle 3-5</td>
<td>87, 91, 95</td>
<td>Q(_{\text{tot}}) = 53.3 m(^3)/d (60% / 40% / 0%) 150</td>
</tr>
<tr>
<td>Idle Cycle 3-4</td>
<td>88, 92</td>
<td>Idle 35</td>
</tr>
</tbody>
</table>

3. Results

3.1. Target aquifer properties

3.1.1. Geochemical aquifer characterization

The extensive geochemical analyses produced a solid understanding of the aquifer geochemical properties. The following reactive phases were identified (Fig. 3, Table 2):

Table 3
Geochemical properties of the target aquifer for the five geochemical units (GU-I-V).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>GU-I</th>
<th>GU-II</th>
<th>GU-III</th>
<th>GU-IV</th>
<th>GU-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay fraction (<2 mm) % d.w.</td>
<td></td>
<td>0.69</td>
<td>0.77</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Gravel fraction (>2 mm) % d.w.</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4.15</td>
<td></td>
</tr>
<tr>
<td>SOM % d.w.</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Carbonates % d.w.</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Total C % d.w.</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>CEC-calculated meq/kg</td>
<td></td>
<td>12.0</td>
<td>14.3</td>
<td>51.1</td>
<td>7.1</td>
<td>6.0</td>
</tr>
<tr>
<td>Pyrite % d.w.</td>
<td></td>
<td>0.06</td>
<td>0.09</td>
<td>1.05</td>
<td>0.90</td>
<td>0.28</td>
</tr>
<tr>
<td>Fe(total) % d.w.</td>
<td></td>
<td>0.55</td>
<td>0.71</td>
<td>1.75</td>
<td>0.86</td>
<td>0.40</td>
</tr>
<tr>
<td>Fe(pyrite) % d.w.</td>
<td></td>
<td>0.03</td>
<td>0.04</td>
<td>0.49</td>
<td>0.42</td>
<td>0.13</td>
</tr>
<tr>
<td>Fe (TR) % d.w.</td>
<td></td>
<td>0.13</td>
<td>0.28</td>
<td>0.91</td>
<td>0.47</td>
<td>0.15</td>
</tr>
<tr>
<td>Fe(react, non-pyrite) % d.w.</td>
<td></td>
<td>0.10</td>
<td>0.24</td>
<td>0.42</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>MnO % d.w.</td>
<td></td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>As ppm</td>
<td></td>
<td>2.2</td>
<td>2.3</td>
<td>14.2</td>
<td>6.1</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Table 4
Groundwater quality observed in the Nootdorp target aquifer, average quality of the injected and recovered water, and most relevant water quality limits.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Ambient groundwater MW1</th>
<th>Injection</th>
<th>Average recovery</th>
<th>Quality limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr. of samples: n</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EC-20 u/cm</td>
<td></td>
<td>1448</td>
<td>2177</td>
<td>3159</td>
<td>4062</td>
</tr>
<tr>
<td>Temp °C</td>
<td></td>
<td>10.6</td>
<td>10.5</td>
<td>10.3</td>
<td>10.5</td>
</tr>
<tr>
<td>pH (°)</td>
<td></td>
<td>6.9</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>DO mmol/l</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Na(^+) mmol/l</td>
<td></td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>K(^+) mmol/l</td>
<td></td>
<td>4.0</td>
<td>4.5</td>
<td>5.4</td>
<td>7.0</td>
</tr>
<tr>
<td>Mg(^2+) mmol/l</td>
<td></td>
<td>0.8</td>
<td>1.3</td>
<td>2.0</td>
<td>2.8</td>
</tr>
<tr>
<td>Fe(^3+) umol/l</td>
<td></td>
<td>469</td>
<td>335</td>
<td>245</td>
<td>258</td>
</tr>
<tr>
<td>Mn(^2+) umol/l</td>
<td></td>
<td>19</td>
<td>19</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>NH(_3) mmol/l</td>
<td></td>
<td>1.2</td>
<td>1.6</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>SiO(_2) mmol/l</td>
<td></td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Cl(^–) mmol/l</td>
<td></td>
<td>3.2</td>
<td>10.0</td>
<td>21.3</td>
<td>27.6</td>
</tr>
<tr>
<td>SO(_4)(^2–) mmol/l</td>
<td></td>
<td>14.4</td>
<td>17.3</td>
<td>21.0</td>
<td>21.1</td>
</tr>
<tr>
<td>TIC mmol/l</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NO(_3) mmol/l</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PO(_4)(^3–) mmol/l</td>
<td></td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>As-t umol/l</td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>DOC mmol/l</td>
<td></td>
<td>0.4</td>
<td>0.9</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>BDX (°)</td>
<td></td>
<td>5.0</td>
<td>4.2</td>
<td>1.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Si (calcite) (°)</td>
<td></td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Si (siderite) (°)</td>
<td></td>
<td>1.9</td>
<td>1.9</td>
<td>1.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>

\(^a\)Specific water quality limits horticulture at the Nootdorp ASR site.
\(^b\)Drinking water limits (EU drinking water directive 98/83/EG, 1998).
\(^c\)Ca range observed: 0.08–0.47 mmol/l.
\(^d\)DO range observed: 0.21–0.41 mmol/l.
\(^e\)Ca range observed: 0.08–0.47 mmol/l.
\(^f\)NH\(_3\) mmol/l.

- Carbonates are present mainly in the upper GU’s (I-III; ~5% weight) and less in the deeper GU-IV and V (<1% weight). The XRF core-scan results indicated however that the carbonates in the deeper units are potentially enriched with Fe (up to 50%) and Mn (up to 20%), while Ca is the dominant cation in the carbonates in GU-I-III (generally >85%), indicating a relatively pure calcite composition;
- The pyrite content is relatively low at the shallow GU-I and II and high in the central (GU-III and IV: 0.90–1.05% weight) and deeper intervals (GU-IV: 0.28% weight);
- Sedimentary organic matter (SOM) is present throughout the target aquifer, although its content is lowest in GU-IV and V (0.22–0.27% weight) and highest in GU-III (1.02% weight);
- The derived CECs observed for this fluvial sediment type (Van Helvoort, 2003).

3.1.2. Native groundwater and injection water quality

The native groundwater is marked by a clear salinity stratification, with relatively freshwater at the aquifer top and brackish water at the base (Table 4). A positive BEX index indicates relatively recent freshening of the aquifer. Deeply anoxic conditions in the native groundwater are reflected by the absence of DO, NO3, and SO42− (Table 4), as well as by the high CH4 concentrations at AWS1 and AWS2 (Fig. 2). The net injected volume is calculated using: gross volume(injected) minus gross volume(recovered). ‘Inject’ marks the average injection concentration.

3.2. The behavior of Na+ during MPPW-ASR

3.2.1. Observed trends in Na+ concentrations

While the transport of Cl− was conservative (Zuurbier et al., 2014), observations at 5 m from the ASR well (MW1; see Supplementary Information) showed enrichment with Na+ and other cations from the ambient groundwater during injection. At the recovery wells (AWS1, AWS2), an earlier arrival of Na+ at significantly higher concentrations compared to Cl− was observed during the final recovery phases of Cycle 1 (Fig. 4). In Cycle 2, Na+ concentrations in unmixed recovered water were constantly higher than Cl− concentrations at AWS1, but equal at AWS2, and actually lower during salinization at AWS3 (Fig. 4). In Fig. 5, the Na+ and Cl− concentrations are plotted on different axes to indicate the relative increase/decrease of Na+.

3.2.2. Assessment of the role of cation exchange on Na+ during MPPW-ASR

3.2.2.1. Reproduction of field observations by the PHT3D-model and simulation of subsequent cycles. PHREEQC calculations to derive the exchanger composition showed that no more than 11% of the exchanger was occupied by Na+ even at the base of the aquifer, while Ca2+ occupied 53–81% of the exchanger sites. The straightforward modelling could reproduce the trends observed at the ASR wells: Na+ concentrations at AWS1 were almost continuously elevated with respect to Cl− (Fig. 6), reaching concentrations around and eventually exceeding 0.5 mmol/l. This limit was not exceeded (Cycle 3) or exceeded 45 days later (Cycle 4 and 5; almost one-third of the total recovery period later) when solely Cl− was analyzed. The Na+ concentrations at AWS2 produced by the PHT3D-model were significantly lower compared to Cl− during salinization at the end of recovery periods (Fig. 6b: Cycle 3–5),

![Fig. 4. Observed Cl− and Na+ concentrations at the upper ASR wells (AWS1 – AWS3, where the recovery occurred) during two subsequent ASR cycles (2012–2013). A relatively small volume was recovered at AWS3; the bulk of the freshwater was recovered at AWS1 and AWS2 (Fig. 2). The net injected volume is calculated using: gross volume(injected) minus gross volume(recovered). ‘Inject’ marks the average injection concentration.](image1)

![Fig. 5. Na+ versus Cl− indicating that freshening (resulting in concentrations Na > Cl) and salinization (resulting in concentrations Na < Cl) occurred before injected water was recovered at the various wells screens of the MPPW.](image2)
comparable with the field observations at AWS3 (Fig. 4). The recovery at AWS2 could therefore be extended with approximately 30 days.

When GU-III was introduced with its high CEC (51.1 meq/kg), a significant and continuous surplus of Na\(^+\) was observed especially at MW1S2 and MW1S3 (results not shown) and to a lesser extent at AW1S1 (Fig. 6a,b). A high-CEC unit centrally in the target aquifer would have had a negative effect: concentrations at AWS1 would rapidly exceed 0.5 mmol/l (comparable to the high CEC scenario), without sufficient compensation by Na\(^+\) retardation.

3.2.2. Implications of cation exchange for Na\(^+\) in the bulk recovered water. The results show that bulk Na\(^+\) concentrations are elevated with respect to Cl\(^-\) in the bulk recovered water at the start of recovery periods for an MPPW-ASR system (Fig. 6c). Na\(^+\) concentrations never reach the injected concentration. Bulk Na\(^+\) concentrations are lower than Cl\(^-\) concentrations in the recovered water during later stages of recovery due to the retarded arrival at AWS2. For a theoretical ASR-system with bi-directional flow paths (no buoyancy) in the same aquifer it was found that water quality will improve with consecutive cycles (Fig. 6c).

3.2.2.3. Effect of sediment and injection water composition on Na\(^+\) in the recovered water. A higher CEC in the target aquifer results in higher Na\(^+\) concentrations at AWS1 (Fig. 6a). The reverse effect was again observed at AWS2, yet stronger than with the 3 times lower field CEC. Here, Na concentrations were generally <0.5 mmol/l, although Cl\(^-\) concentrations reached 8 mmol/l.
Addition of 5 mmol/l gypsum while assuming the low field CECs would lower Na⁺ concentrations at AWS1 in the first phase of recovery, but could not increase the recovered water volume with sufficiently low Na⁺ concentrations. In this case, the Na⁺ concentrations were relatively higher at the top of the AWS1 well screen and lower at its base, but the recovered water quality was similar. Raising the addition of gypsum to 20 mmol/l did not result in improvement of the recovered water quality, nor an increase in Na⁺ retardation.

3.3. Concentration increases for Fe²⁺, Mn²⁺, and As

3.3.1. Observed trends in Fe²⁺, Mn²⁺, and As concentrations

During recovery in Cycle 1, Mn²⁺ concentrations frequently exceeded the operational limit of 0.9 mmol/l at AWS1 (which was a recovery well after injecting 1132 m³). Breakthrough of also Fe²⁺ and As was observed here later during recovery. At AWS2 (alternating injection/recovery), Mn²⁺ and Fe²⁺ concentrations were significantly lower: an increase of Mn²⁺ was observed only during the first, short recovery stages and at the end of Cycle 1. AWS3 was used mainly for injection and showed high Mn²⁺ and As concentrations during short recovery stages.

In Cycle 2, high Mn²⁺ and elevated Fe²⁺ and As concentrations were observed at AWS1, but concentrations were lower than in Cycle 1, and were lowered further after partly restoring the freshwater injection at this well. The recovered water at AWS2 was virtually free of As, Fe²⁺, and Mn²⁺ in Cycle 2. Mn²⁺ and later Fe²⁺ did cause frequent and severe deterioration of the water recovered at AWS3, despite a significant net injection. Most enrichment was observed at the S3 wells (also at MW1, see Supplementary Information) and concerns Mn²⁺. The As mobilization tended to decrease over time. Water reaching AWS1, which was injected at deeper aquifer intervals, was on average slightly enriched with all elements of concern.

3.3.2. Assessment of the mobilization of Fe²⁺ and Mn²⁺

3.3.2.1. Effect of mixing and cation exchange on Fe²⁺ and Mn²⁺

Mixing was assessed with the mixing lines for Fe²⁺ and Mn²⁺ in Fig. 8. Only at MW1, a part of the observed concentrations plot on the mixing line. A relation with the BEX was partly present for Fe²⁺ but not for Mn²⁺ (see Supplementary Information). Enrichment of Fe²⁺ and Mn²⁺ (~3 mmol/l) occurred even in freshwater samples with a neutral BEX (freshening completed).

3.3.2.2. Effects of carbonate dissolution in combination with pyrite oxidation.

The geochemical analyses (Fig. 3) indicated a potential presence of Fe- and Mn-bearing carbonates at the S3 and S4 levels. However, the dominance of the more soluble calcite (CaCO₃) should primarily result in an increase in Ca²⁺ and inorganic carbon (primarily HCO₃⁻ under the pH observed (Appelo and Postma, 2005)). The increase in Ca²⁺ (Fig. 9) was generally accompanied by an increase in HCO₃⁻ with a ≈1.2 ratio (Ca:HCO₃, Table 1), representing calcite equilibrium under varying CO₂ pressures (from atmospheric pCO₂ = 10⁻³ atm) up to around 10⁻² atm. Relatively low Ca²⁺ concentrations were accompanied by a relatively high positive BEX. Relatively high Ca²⁺ concentrations at the S3-level (generally accompanied by only a slightly positive BEX) on the other hand indicated calcite-dissolution by proton-buffering upon pyrite oxidation (Harthog et al., 2002; Stuyfzand, 1998). One sample indicated salinization (negative BEX), which may explain its relatively high Ca²⁺ concentration (Fig. 9).

To verify which reactive processes were driving the carbonate dissolution observed, simple PHREEQC batch simulations were performed. The injection water’s ionic balance was first attained by adjusting the HCO₃⁻ concentration, than equilibrated under atmospheric pCO₂, subsequently brought in equilibrium with calcite in a closed system, and finally all dissolved oxygen was used to oxidize pyrite while maintaining the calcite equilibrium (see reaction equations in Table 1). The equilibration dissolution resulted in a relatively low Ca²⁺ concentration (0.27 mmol/l), close to the lowest Ca²⁺ concentration observed in the recovered freshwater (Fig. 9). The PHREEQC simulation indicated no more than 0.61 mmol Ca/l and 0.91 mmol HCO₃⁻ l could be attained when pyrite oxidation by oxygen in the average injection water was stimulating carbonate dissolution. The sporadically observed higher DO (up to 0.4 mmol/l), Ca²⁺ (up to 0.47 mmol/l), and HCO₃⁻ (up to 0.95 mmol/l) concentrations in the injection water could not have led to the Ca²⁺ and HCO₃⁻ concentrations observed, especially in Cycle 1 (Fig. 9).

The calculated oxygen consumption (Table 5) based on the observed SO₄⁻ production indicated that virtually all oxygen in the injected water at the lower part of the aquifer (GU-IV and V, level S3 atmospheric pCO₂, subsequent.
and S4) was used for oxidation of pyrite in Cycle 2 (Table 5), but not in Cycle 1. Furthermore, the Ca:SO₄-ratio at the S3-level was lower in Cycle 2 than in Cycle 1 (Fig. 8b).

3.3.2.3. Removal of mobilized Fe and Mn by adjustments in the injection scheme. To improve the recovered water quality at AWS1, periodic injection of small rainwater volumes was applied to stimulate subsurface iron removal (SIR; Van Beek, 1985; van Halem et al., 2011) during Summer 2013 after 1 year of only recovery at this well. The Mn²⁺ concentrations decreased from 4.1 μmol/l to almost 0 μmol/l. About 8 vol of water could subsequently be recovered with Mn²⁺ concentrations below the limit (0.9 μmol/l) after injection of 1 volume of oxygen-containing rainwater (see Fig. 7 and the Supplementary Information). Fe²⁺ was kept below 1 μmol/l. The SO₄-production during SIR injections following abstraction of Mn²⁺ and Fe²⁺-rich water at S1 level was lower in Cycle 2 (Table 5). Removal of As by SIR appeared less effective.

4. Discussion

4.1. Increasing Na⁺ concentrations during MPPW-ASR in coastal aquifers

Field observations and reactive transport modelling demonstrated a dominance of cation exchange during MPPW-ASR in controlling Na⁺ mobility. MPPW-ASR optimizes the recovery of practically unmixed water (low EC, no increase in Cl⁻), but repeated salinization of the deeper aquifer intervals during ASR cycles resulted in non-conservative arrival of Na⁺ (and other cations from the native groundwater like Mg²⁺, K⁺, Fe²⁺, Mn²⁺) at the recovery wells. Since particularly a zone of Na⁺-enriched water is undesirable for irrigation water use, the control of Na⁺ concentrations cation exchange processes was a critical factor during the MPPW-ASR pilot.

A cycle-after-cycle water quality improvement is lacking around the deepest wells screens during MPPW-ASR thanks to a repeating

Fig. 8. Mn versus Fe recovered from the ASR well (AW) and observed in the aquifer at 5 m from the ASR well (MW1).

Fig. 9. Ca²⁺ versus HCO₃⁻ (a) and Ca²⁺ versus SO₄²⁻ concentrations (b) in the water recovered from the ASR wells. The dashed line in (a) represents calcite equilibrium for increasing CO₂-pressure, the calculated concentrations as a consequence of pyrite oxidation are marked for the average and the maximum observed Ca²⁺ concentrations in the injection water.
cycle of Na\(^+\) adsorption (recovery: brackish water replaces infiltrated freshwater) and desorption (injection: freshwater replaces brackish water). Modelling showed that a zone with a CaCl\(_2\) water type around the freshwater body cannot decrease Na\(^+\)-enrichment, as it is diluted and then transported to the shallower parts of the aquifer by density-driven flow, while a native, brackish NaCl water type continues to encroach the deeper part (Fig. 10).

The net positive or negative effect of Na\(^+\) mobility on the RE depends on the combination of the CEC, native groundwater and injection water composition, and the limits set for Na\(^+\) in the recovered water. The mass of mobilized Na\(^+\) will increase with increasing CEC and native water salinity. The volume of the enriched zone and its Na\(^+\) concentration will be controlled by Ca\(^2+\) concentrations in the injected water. The potential water quality deterioration should be taken into account especially in saline, anisotropic aquifers with intercalated fine sand beds (with a high CEC), which may be preferably targeted over coarse-grained, low-anisotropic aquifers with intercalated

4.2. Increasing Fe\(^2+\) and Mn\(^2+\) concentrations during MPPW-ASR

4.2.1. Mobilization during freshwater injection

Both mixing and cation exchange could not explain the observed (continuous) increase in Fe\(^2+\) and Mn\(^2+\) in the injected water (Section 3.3.1). Due to the high carbonate content and the potentially significant contribution of Fe and Mn to the carbonates (Fig. 3), dissolution of Fe and Mn-containing carbonates was suspected to be a source for mobilization. The amount of calcium mobilization in especially Cycle 1 could be only partly explained by equilibrium calcite dissolution enhanced by proton-buffering upon pyrite oxidation (Fig. 9). Particularly in Cycle 1, processes other than pyrite-oxidation stimulated calcite dissolution, such as oxidation of Fe\(^2+\) and Mn\(^2+\) (see the reactions in Table 1). Based on the Ca\(^2+\) and HCO\(_3\) concentrations observed, oxygen was partly consumed by the oxidation of Fe\(^2+\) and Mn\(^2+\) rather than SOM (Fig. 9). With the observed Ca\(^2+\) and DO concentrations in the injection water and the dissolution processes, the resulting Ca\(^2+\) and SO\(_4^{2-}\) concentrations could be explained.

Since the observed Ca\(^2+\) concentrations can be explained by equilibrium dissolution and acid buffering upon proton and CO\(_2\) production, it is concluded that the dissolved carbonate was merely pure calcite. The lasting enrichment of Fe\(^2+\) and Mn\(^2+\) in the deeper aquifer interval (constantly ~3 mmol/l in Cycle 2) indicates that less than 1% of the dissolved carbonate was in the form of Fe and Mn-carbonates. This was sufficient to create an undesirable Fe\(^2+\) and especially Mn\(^2+\)-enriched water type.

In the upper aquifer interval (GU-I, level S2), other processes
than pyrite oxidation in both cycles prevailed, which was presumably caused by the lower pyrite and higher SOM content (Table 3). Based on the low Ca\(^{2+}\) and SO\(_4^{2-}\) production and the geochemical composition, oxidation of organic matter was the most likely lasting process of oxygen consumption. Mobilization of Fe\(^{2+}\) and Mn\(^{2+}\) was limited for this reason and due to the purer calcite (Fig. 3) and the absence of periodic salinization.

4.2.2. Mobilization of Mn\(^{2+}\) during recovery

Fe\(^{2+}\) and Mn\(^{2+}\) concentrations of ~3 \(\mu\)mol/l were mobilized in the deeper aquifer but not encountered during recovery. Instead, the recovered water had a much higher Mn:Fe ratio in comparison with the water at MW1. A general shift occurred from a Fe\(^{2+}\)-dominated water type to a Mn\(^{2+}\)-dominated water type. This suggests that especially Fe-hydroxides precipitated, which potentially increased the sorption of especially Fe\(^{2+}\). Mn-oxides (like MnO\(_2\)) may also have formed close to injecting ASR wells by oxidation of (adsorbed) Mn\(^{2+}\) during injection phases. However, they were likely reduced by Fe\(^{3+}\) by anoxic water during recovery phases, causing the increase of the Mn:Fe ratio. This process (Table 1), which is described by Postma and Appelo (2000), is relatively fast (Postma, 1995). Part of the Fe\(^{2+}\) immobilization and Mn\(^{2+}\) enrichment could also have been caused by sorption of Fe\(^{2+}\) by Fe(OH)\(_3\), inducing proton-buffering via dissolution of Fe- and Mn-carbonates. However, Fe\(^{2+}\)-concentrations observed at 5 m from the ASR-well were generally half the Mn\(^{2+}\)-concentrations reaching the ASR well (Fig. 8). This suggests that MnO\(_2\) reduction was the dominant process driving the mobilization, with 1 mol of Mn\(^{2+}\) produced through the oxidation of 2 mol of Fe\(^{2+}\) (Table 1).

4.2.3. Overall effect of MPPW-ASR on Fe\(^{2+}\) and Mn\(^{2+}\) in the recovered water

At the Nootdorp site, the deep aquifer intervals of preferential injection coincide with an aquifer interval which is pyrite-rich and contains Fe and Mn-bearing carbonates. The Fe\(^{3+}\) and Mn\(^{2+}\) released upon dissolution could travel relatively unhindered towards the shallow AWS1, where no injection occurred and Fe-hydroxides and Mn-oxides to adsorb Fe\(^{2+}\) and Mn\(^{2+}\) were absent (Fig. 10). The positioning of the different reactive aquifer units is therefore unfavorable as the oxygen in the injected water is consumed by processes that negatively influence the water quality. Geochronically, injection would be preferred in the shallow GU-I, such that oxygen would be mainly consumed by organic matter in presence of a relatively pure calcite to buffer the associated increase in CO\(_2\) pressure.

The Nootdorp MPPW-ASR pilot illustrates that the presence and the exact depth interval of reactive layers have a major impact on the recovered water quality. In contrast with conventional ASR in freshwater aquifers, the bulk recovered water quality is not controlled by the average geochemical composition of the target aquifer, but dominated by the reactivity of deeper aquifer segments where most injection occurs. During MPPW-ASR, a much larger part of the injected water had to pass the deeper (sub)horizontal reactive units. The (sub)horizontal geochemical stratification of sedimentary aquifers therefore deserves more attention.

4.2.4. Dealing with Mn\(^{2+}\) and Fe\(^{2+}\) mobilization

The recovery of Mn\(^{2+}\) and especially Fe\(^{2+}\) can be controlled by periodically injecting a small portion of the oxic injection water at the shallow recovery well. The system then injects a little more like a conventional ASR-well, creating precipitates around the recovering wells by oxidation of adsorbed and released Fe\(^{2+}\) and Mn\(^{2+}\) without significantly decreasing the aquifer permeability (Metzler et al., 2001). This process of subsurface iron removal (SIR) may be preferred over aboveground iron removal, as it does not create a waste stream. Antoniou et al. (2014) pre-treated anoxic sediment columns from the GU-V with KMnO\(_4\) to create neo-formed Mn-oxides that increase the adsorption of Mn\(^{2+}\) and Fe\(^{2+}\). This method has two main advantages: (1) KMnP\(_4\) is a strong oxidant leading to extensive oxidation/depletion of pyrite, SOM, and Fe and Mn-carbonates, and (2) the oxidation reactions increase the pH which accelerates the precipitation of Mn-oxides and raises the sorption capacity for Fe\(^{2+}\), Mn\(^{2+}\), and As.

4.2.5. Behavior of arsenic at the Nootdorp MPPW-ASR pilot

As-mobilization decreased under more-and-more oxidized conditions around the ASR wells. Mn-oxides and Fe-hydroxides formed during injection likely facilitated As-adsorption. The passing of a clear and high As-peak early during injection suggest that a transition of As (III) to As(V) under oxidizing conditions was a boundary condition for As-adsorption, as observed in a similar target aquifer at approximately nearby (Stuyfzand, 1998; Wallis et al., 2010). Remobilization was not observed in the recovered freshwater. The observed As-release during salinization can be caused by anion exchange when the anions in the ambient groundwater (such as PO\(_4^{3-}\) and HCO\(_3\)- (Stuyfzand et al., 2006)) pass and by reduction of the formed Fe-hydroxides (Lazareva et al., 2015). This may alter the native brackish water around the MPPW-ASR system in Nootdorp, rather than the injected freshwater.

5. Conclusions

Reactive transport processes resulted in increases in Na\(^{+}\), Fe\(^{2+}\), Mn\(^{2+}\), and As concentrations during the Nootdorp MPPW-ASR pilot. A significant freshwater volume was enriched with especially Na\(^{+}\) due to cation exchange during freshening at the base of the target aquifer with every injection phase. Na\(^{+}\)-enriched water was subsequently recovered by the shallow recovery wells due to the upward flow paths. As the arrival of Na\(^{+}\) during salinization of the deeper aquifer interval was retarded by cation exchange, the net effect on the recovery efficiency (RE) during MPPW-ASR is site-specific and dependent on the CEC, the composition of the native groundwater and injected water, and the limits set for Na\(^{+}\) in the recovered water. Unlike ASR systems in freshwater aquifers, negative effects from cation exchange on RE do not decrease cycle-after-cycle.

The release of Fe\(^{2+}\) and especially Mn\(^{3+}\) can caused deterioration of injected freshwater and was a consequence of mobilization by cation exchange during freshening, but primarily and lastingly by dissolution of Fe and Mn-bearing carbonates in the lower half of the target aquifer. Here, dissolution was promoted by proton-buffering and CO\(_2\) production induced by pyrite oxidation (lastingly) and the oxidation of primarily adsorbed Fe\(^{3+}\) and Mn\(^{3+}\) (mainly Cycle 1). The lack of injection at the shallowest recovery well prevented formation of Fe-hydroxides and Mn-oxides around this well and prevented adsorption of mobilized Fe\(^{2+}\) and Mn\(^{2+}\) prior to recovery. Since MnO\(_2\) was an important oxidant for Fe\(^{2+}\), mobilization of Mn\(^{2+}\) was the most prominent water quality threat. Precipitates to adsorb Mn\(^{2+}\) and Fe\(^{3+}\) close to the shallow recovery well(s) can be stimulated by periodic injections of small oxygen-rich water volumes (‘subsurface iron removal’). Arsenic immobilized under oxidizing conditions and was remobilized during salinization.

More so than for ASR systems in freshwater aquifers, the inherent tendency of geochemical heterogeneity and the different aquifer intervals for deep injection, mobilization, and transport towards recovering wells is crucial for the resulting recovered water quality during MPPW-ASR. Detailed characterization of the vertical variation of geochemical properties is therefore preferred.
to allow optimal placement of the MPPW well screens and development of a management strategy to combat potential water quality issues.

Acknowledgements

This research was funded by the Knowledge for Climate research program as part of its theme ‘Climate Proof Freshwater Supply’, the joint research program of the Dutch drinking water companies (BTO), and the EU FP7-projects DESSIN (grant agreement no. 619039) and SUBSOL (grant agreement no. 642228). The authors would like to thank Frans Backer, Michel Groen, John Visser, Martine Hagen, and Guido Beenakker for their assistance during fieldwork and lab analyses. Codema B-E De Lier and Van der Goes Orchideeën are thanked for their financial and practical support during installation and operation of the Nootdorp ASR-system. One anonymous reviewer, the associate editor, and Thomas Missimer are thanked for their comments on the earlier version of the manuscript.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.apgeochem.2016.05.013.

References

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.apgeochem.2016.05.013.

References